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A consensus protocol for the in silico optimisation
of antibody fragments†

Miguel A. Soler, ab Barbara Medagli,c Marta S. Semrau,d Paola Storici,d

Gregor Bajc,e Ario de Marco,f Alessandro Laio*ag and Sara Fortuna *c

We present an in silico mutagenetic protocol for improving the binding

affinity of single domain antibodies (or nanobodies, VHHs). The method

iteratively attempts random mutations in the interacting region of the

protein and evaluates the resulting binding affinity towards the target by

scoring, with a collection of scoring functions, short explicit solvent

molecular dynamics trajectories of the binder-target complexes. The

acceptance/rejection of each attempted mutation is carried out by a

consensus decision-making algorithm, which considers all individual assess-

ments derived from each scoring function. The method was benchmarked

by evolving a single complementary determining region (CDR) of an anti-

HER2 VHH hit obtained by direct panning of a phage display library.

The optimised VHH mutant showed significantly enhanced experimental

affinity with respect to the original VHH it matured from. The protocol can

be employed as it is for the optimization of peptides, antibody fragments,

and (given enough computational power) larger antibodies.

The discovery and optimization of antibodies has become an
essential tool in nanomedicine and nanotechnology.1,2 Indeed,
the number of new medical applications involving antibodies
is constantly growing, as different nude antibodies, antibody-
functionalized nanoparticles and effective antibody–drug conjugates
(ADCs) have entered clinical trials and have been approved

for clinical applications.3 Antibody engineering has evolved
towards improving the production of more efficient immuno-
agents.

With respect to the past, there is more attention to conjugation
procedures aimed at obtaining more homogeneous products.
The possibility to control and model the macromolecule func-
tionalization is one of the reasons for which recombinant anti-
body fragments represent a nimble alternative to full-length
IgGs.2,4 They offer unique opportunities as reagents for super-
resolution microscopy5,6 and are easier to treat with computational
approaches.7–9 Among the different types of antibody fragments, the
single domain antibodies, or nanobodies (VHHs), are the smallest
fragments that still preserve the binding capacity of the whole
original antibody they derive from.2,10

The major issue that any computational design approach
must deal with is the accuracy in the evaluation of the binder-
target binding affinity, an essential feature for selecting the
optimum binders.11,12 The use of scoring functions (SFs) to
evaluate the interaction between proteins is a particularly
convenient approach.13 Despite the broad variety of available
SFs and the constant development of new ones, no ‘‘golden
standard’’ has emerged yet. Indeed, SFs are developed by following
different philosophies, employing different experimental databases,
and different procedures to compute the interactions between
atoms or a group of atoms. The accuracy of SFs is typically system
dependent. Since the evaluation of the binding affinity by SFs is
often affected by large errors the employment of consensus scores
has been proposed.14,15 This approach often improves the
accuracy with respect to individual SFs, but generally relies on
the determination of system-dependent weights.

Here we present an iterative mutagenic protocol for the in
silico maturation of proteic binders based on a parameter-free
consensus optimization (Fig. 1a). We believe that this approach
could enable the rational design of stronger protein–ligands for
the design of novel nanodevices16 and for single molecule
experiments.17 The protocol differs from formerly proposed
algorithms in that it does not rely on structural databases.8,9,18

Instead, building on previous experience in peptide design,19,20,21,22
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it relies on the scoring of molecular dynamics (MD) trajectories in
explicit solvent. The most important novelty of the protocol is in the
consideration of several SFs to evaluate the binding affinity between
each binder and its target, making consensus decisions based on a
parameter-free combination of all binding scores. As the binding
scores are proxies for the binding free energy (i.e. the larger the
binding affinity, the lower the score) the protocol, implemented in
an iterative scheme, allows improving the theoretical binding
affinity for all the SFs at the same time.

To benchmark the method we optimize a single CDR of a hit
VHH known to bind HER2 (human epidermal growth factor
receptor 2) with unsatisfactory dissociation constant (kd =
900 nM, Fig. 1b and c).14 The general approach requires the
knowledge of the macromolecule structures involved (real or
derived). We thus started from a VHH, named D9, modeled by
homology modeling and docked to HER2, for which the crystal
structure was available.14,23

The consensus-based protocol starts from the above con-
formation i comprising two interacting proteins prepared as
in the ESI,† Section S1 (Fig. S1–S4). One first performs a
finite temperature MD simulation in water solvent, followed
by the computation of Ns trajectory-averaged binding scores
Si
1;S

i
2; . . .Si

Ns
. One then subsequently performs: (i) an attempted

mutation of one randomly selected residue of the binding
region thus generating a new complex i + 1; (ii) a finite
temperature MD simulation of the complex i + 1 in water
solvent; (iii) the computation of Ns trajectory-averaged binding

scores Siþ1
1 ;Siþ1

2 ; . . .Siþ1
Ns

; (iv) the comparison of each k-th binding

score obtained for the complex i + 1 with that computed for

complex i and the construction of a score vector
-

Si = {ci
k} of

dimension Ns where:

cik ¼
1 if Siþ1

k � Si
k o 0

0 otherwise

(
(1)

The i-th mutation is accepted if

Ci ¼
XNs

k¼1
cik � T (2)

where T is an integer number between 0 and Ns, and rejected if
Ci o T. The parameters of this approach are the number Ns of
SFs, and the value of T.

In the particular case of VHH optimization we set Ns = 6: in
our former work14 we have identified six different SFs capable
of reproducing with good accuracy the experimental binding
affinity ranks of VHH sets.11 Although a higher number of SFs
would allow a higher number of combinations to achieve the
consensus criterion, this would also require a higher number of
concurrent SFs to be computed and optimized. The consensus
criterion establishes that one mutation is accepted if at least T

binding scores are improved by the mutation, leading to
Ns

T

� �
possible combinations to achieve this criterion. In the ESI†
(Section S2 and Fig. S5, S6) we show that the optimal consensus
threshold for our system is T = 3. With lower T the scores do not
improve significantly, while with higher T they improve too slowly.

Overall the protocol requires choosing two parameters
(Ns and T) which may in principle be different in different
systems. The six scoring functions used in this work were
selected based on ref. 14. It could well be that for certain types
of mutations (e.g. charged/uncharged residues), the addition of
other SFs to the set might improve the final output. The
protocol proposed here is modular as one may easily increase
the library of SFs as new ones become available.

A typical optimization is shown in Fig. 2a. Here the tunable
parameter T is set to T = 3, optimal consensus threshold for our
system and our choice of SFs (ESI,† Fig. S5 and S6). Another
example, namely the optimisation of a peptide as a binder
towards the same target can be found in the ESI† (Section S3
and Fig. S7, S8) where the same SFs and T = 3 have been
employed validating the algorithm on a different system and
demonstrating both the algorithm robustness and its general
applicability. Being ri

k the rank of complex i according to the SFs
k, we define

r̂ik ¼
rik
N

(3)

where N is the total number of accepted mutations obtained in
the runs. The average ranking score of complex i is defined as

Ri ¼ 1

Ns

X
k¼1;Ns

r̂ik; i ¼ 1;N (4)

Along the optimization both r̂i
k and Ri decrease and, after 44

attempted mutations, they reach a stationary state in which the
SFs do not improve anymore, but still keep on changing due to

Fig. 1 (a) Algorithm diagram; (b) starting binding conformation between
D9 (green) and the HER2 ectodomain (yellow/gray), and (c) close-up on
the HER2 domain employed in the design simulations with highlighted
CDR1 (red, to be optimized), CDR2 (gray), and CDR3 (blue).
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stochastic fluctuations. The optimization performed with the
consensus criterion allowed a lower predicted binding affinity
to be reached than an equivalent Monte Carlo (MC) optimiza-
tion performed by using a single score (details in the ESI,†
Section S4 and Fig. S9). The MC optimization brings a gradual
decrease of the score which is optimized, but most of the other
scores are uncontrolled and do not change significantly. With
the same computational effort, our protocol was capable of
optimizing all the scores simultaneously.

To choose the optimum binder to undergo experimental
validation we selected the lowest ranking solutions along the
optimization (mutants 21–44 with sequences in the ESI,† Section S5
and Table S1) and performed 200 ns MD simulations in water
solvent at 330 K (further computational details in the ESI,† Sections
S6 and S8). Simulation snapshots reveal how successive mutations
allow the VHH to extend its side chains into the target structure,
thus maximizing the binding interface (Fig. 2b–d). The SFs’
computations14 clearly reveal their lower value with respect to those
computed for the initial complex (Fig. S10, ESI†). Their averages
calculated over the last 100 ns together with a small standard
deviation, further confirm that result (Fig. S11, ESI†): for instance,
both the first and last selected mutants, 21 and 44, are predicted to
bind stronger than the original D9 by all SFs (Fig. 2e–g). We further
estimated their yield:7 while 21 was expected to be prone to
aggregation, 44 was expected to be found in the same multimeric
state as the original D9 (see Fig. 3a).

The selected mutants, 21, 44, and D9, were cloned in a pET
14b expression vector; modified to generate a VHH-Cys-6His tag
at the C-terminal domain and expressed in a bacterial host. All
proteins were expressed in a soluble form and were purified via
IMAC followed by SEC. D9 and 44 were shown to be present in
the same (monomeric) oligomeric state (Fig. 3b).

The VHH binding ability was then tested using an enzyme-
linked immunosorbent assay (ELISA) confirming the VHH/antigen

recognition (ESI,† Section S7 and Fig. S12), as well as through
surface plasmon resonance (SPR). In SPR the VHHs were used as
analytes, after the immobilization of the HER2-Fc via amine cou-
pling. In this setup, the experimental Kd calculated for D9 was in the
low micromolar range (448 nM, Fig. 3c) and, while 21 did not show
any improvement over D9 and was ill behaved at the SPR, VHH 44
showed a fivefold Kd improvement over D9 with a Kd in the
nanomolar range (98 nM, Fig. 3d).

A number of factors contributed to achieving this result
(Fig. 3e and f): (i) most of the original structural pattern of the
binding to HER2 was maintained during the optimization: this
pattern contains two hydrogen bonds and five out of six
hydrophobic contacts; (ii) new strong directional interactions
were formed: for example, the two new arginines instead of
glycines at positions 25 and 26 now allow for hydrogen bonding
with HER2 Cys55 and Glu88 (see Fig. 3f); (iii) van der Waals
interactions were maximized passing from six hydrophobic
contacts in D9 to ten contacts in the final complex. Overall,
the binding affinity increase shifted the original VHH Kd closer
to the median of the Kd distribution of the Structural Antibody
Database (SAbDab),8 approximately located at 10 nM. Given the
a priori lack of structural information (VHHs were built by
homology modelling and complexes by docking) the achieved
result is in itself remarkable. This highlights the importance of
performing a correct sampling of the binding conformations
along the design protocol to obtain accurate predictions of the
mutants’ binding affinities.

In this work we have employed a cleaved domain to repre-
sent the target epitope. The length of such a sequence will
certainly affect the optimization process but a trade-off must be
sought between available computing power (which might
require a smaller fragment to be employed) and accuracy of
the model (which might require describing explicitly the sur-
rounding protein matrix).

Fig. 2 (a) Global (black circles and lines) and scoring-function specific (star) ranking scores of the bindings between VHH mutants and HER2 as obtained by
optimization with Ns = 6, T = 3. Three selected mutants are indicated by arrows; (b–d) simulation snapshots of the three selected complexes. CDR1 amino acids are
highlighted as follows: the same as in D9 (red), mutated at step 21 with respect to D9 (blue), mutated at step 44 with respect to 21 (orange); (e–g) binding scores
averaged over MD simulations of the selected VHH/HER2 complexes, with an interval of 100–200 ns, where the error bars are standard deviations calculated by
block analysis. In this representation the units of the different scoring functions have been rescaled in order to make the relative variations visible.
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Being aware of the current computational limitations in
achieving high accuracy in the computational design, our protocol
can be applied to practically any binder-target system, as similar
old versions of the design approach have been used for peptide–
drug19,20 and peptide–protein21,22 systems. The design of a
complete antibody using our protocol requires more computational
resources than structure-based combinatorial approaches.8,18

However, high performance computing resources are more
and more commonly available, making our approach a viable
option if one wants to perform a high accuracy design, based on
a quantitative control of the interaction pattern predicted by
molecular dynamics.
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Schematic diagram of the interaction between HER2 and (a) D9 and (b) 44:
protein residues interacting with the target by van der Waals interactions are
highlighted in red, while hydrogen bonds are highlighted in green. Equivalent
HER2 binding amino acids are highlighted by circles.
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